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Abstract  

The Poincar~ invariant system of two point particles with an instantaneous interaction- 
at-a-distance originally proposed by Fokker is studied in the Hamittonian formalism. The 
interaction, which agrees to first order in the coupling constant with the electromagnetic 
one obtained from the Lienard-Wiechert fields, is described in an advanced-retarded state 
space. The first particle moves in the advanced field of the second which in turn is subject 
to the retarded field of the first. The acceleration terms in the Lidnard-Wiechert fields 
are neglected. 

In this theory the state space of the system is a twelve-dimensional manifold ~ and 
the motions are described as integral curves of a vector field that is obtained as the 
projection of the generator of time translations in space-time. The Poincard group acts 
on this manifold 2 in a well-defined way and leaves a symplectie form co invariant. Thus 
the set of all possible motions of this system can be studied by the methods of modern 
symplectic mechanics. In this paper the general method is explained and the set of all 
bounded motions for two equal rest masses and an attractive force is studied qualitatively 
and numerically, tn the limit (binding energy)/(sum of rest masses ). ( speed of light) 2 ~ 0 
all the features of the classical Kepler motion are obtained. 

1. Introduction 

In two  prev ious  papers  (Ktinzle ,  1974a  and  b,  to  be  refer red  to  b y  I and  II, 
respec t ive ly)  the  general  d i f fe ren t ia l  geomet r i c  f o rma l i sm  was d iscussed t h a t  
makes  i t  poss ible  to  descr ibe  the  Poincar6  inva r i an t  mul t i -par t ic le  sys tems o f  
i n s t a n t a n e o u s  ac t ion-a t -a ,d i s tance  t h e o r y  in a H a m i l t o n i a n  form.  By the  l a t t e r  
we m e a n  a desc r ip t ion  o f  the  m o t i o n s  o f  the  sys tem as in tegra l  curves  o f  a 
vec to r  field 6f  on  a f ini te  d imens iona l  symplec t i c  m a n i f o l d  ( 2 ,  co). T h e  
d i m e n s i o n  o f  Y~ is twice  the  degree o f  f r e e d o m  o f  the  sys tem,  the  ' t i m e  f low'  
genera ted  b y  :T leaves co invar ian t ,  i.e. ~ o c o  = 0, w h e n c e  ( local ly)  ~f  J co = dH 
for  some f u n c t i o n  H o n  £ t h a t  can  be called the  H a m l l t o n i a n .  Fo r  an  isola ted 
relat ivist ic  sys tem co is m o r e o v e r  requ i red  to  be  inva r i an t  u n d e r  the  Poincar4  
group.  
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It  was shown in II that such a state space Z for the two-particle system can 
be chosen as the twelve-dimensional submanifoldt 

k = 1,2} 

of  the sixteen-dimensional evolution manifold R a6 = {x~, v~, k = 1, 2}. It is 
thus diffeomorphic to R t2 = {x A, v A} and describes the positions and 3- 
velocities of  the two particles taken not simultaneously with respect to an 
observer at rest, but  for the second particle at a time retarded with respect to 
the first. Then it turned out that not  only can Y~ be equipped with a Poincar~ 
invariant symplectic form co such that the Poisson brackets~ between all the 
position coordinates x~k vanish for many non-trivial force laws, but the form 
~o seemed also to be almost uniquely determined for a given interaction force. 
It was also shown that the electromagnetic interaction as derived from the 
Li~nard-Wiechert potentials and modified in the .way of  Fokker (1929) fits 
very naturally into this formalism. 

The purpose of this paper is to study this particular interaction in some 
detail. We make full use of  the symplectic structure co on ~ and its invariance 
under the Poincar6 group which leads by Noether's theorem (for its formula- 
tion in the framework of  symplectic geometry see Souriau ( t970))  to the 
existence of  the ten well-known integrals of  motion. They can be used to 
introduce a center o f  mass frame and to define unambiguously a six- 
dimensional state manifold Er for the 'relative motions'  of  the two particles 
which is the direct analogue of  the non-relativistic Kepler manifold (Souriau, 
1974). The same expressions for the integrals of  motion can also be derived 
using the Fokker action principle as was done by Bruhns (1973) (and partially 
by Staruszkiewicz (1971)), but it is not obvious from their treatment whether 
a symplectic structure on a state space and thus a Poisson bracket between 
arbitrary observables can be defined this way. Bruhns does not define a state 
space but finds some special solutions of  the equations of  motion in the four- 
dimensional formulation. This method has some advantages as it is space.time 
covariant, but  it is not  very well suited for a systematic analysis of  all solutions 
since many somewhat arbitrary choices must be made during the integration, 
like those of  suitable curve parameters. Our approach makes it easier to com- 
pare the results with the non-relativistic two-body problem and also allows, in 
principle, a global analysis o f  the motions by the methods o f  modem symplectic 
celestial mechanics. 

Section 2 is a summary of  the results obtained in I and II. The main definitions 
and the notation are recalled but for all details and also for more references 
the reader is referred to these two papers. In Section 3 the integrals of  motion 

47 Greek indices refer to cartesian coordinates of four-dimensional Minkowski space 
, a = 0, 1, 2, 3, ~a~ = ~/c~ = diag (-1, 1, 1, 1 ). Capital Latin indices denote the space- 

like components and range from 1 to 3. For the 3 space components x A of a vector we 
also write x. 

$ For f, g: Z ~ R define(f, g):= Xf(g) where X f . A  ~ = dr,  cf. Abraham & Marsden 
(1967). 
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are used to define the center of  mass frame in the same way as is customary 
for special relativistic multiparticle systems that do not interact or interact 
oniy by collisions (see, e.g., Synge, 1965). These first integrals are used again 
in Section 4 to introduce suitable coordinates in the relative state space and 
to reduce the integration of  the equations of  motion to two quadratures. 
Sections 5 and 6, finally, contain the numerical results for the general bounded 
motions in the case of  equal rest masses and to some special questions for the 
case of  arbitrary mass ratios, respectively. 

2. State Space, Dynamical System and Sympleetic Structure 

In I and II it was shown that a system of  two massive point particles in the 
instantaneous action-at-a-distance theory can be described by a second-order 
system 

dx~ _ akv~ ' dv~ = a k ~  + bkv~ (2.1) 
dtk dtk 

X c~ where k = 1, 2, and ( k, v~) are cartesian coordinates of  the tangent bundle 

TVk of  Minkowski space V k = ~ 4, while ~k and ~k are arbitrary functions 
on E = T(V 1 x V2). The 'accelerations' ~ are arbitrary given functions on E 
subject to) 

vlObz~k =[3ktV ~ q4 :k )  (2.2) 

(t'~Opl + ~ O & ) ~  = 7ktV~ (l 4: k) (2.3) 

for some arbitrary functions e~k, tim and 7m on E. Invariance of  the system 
(2.1) under the Poincar6 group, and thus under its infinitesimal generators 
o n  E ,  

= 3a, + 0% (2.4) 

2 
ac~e = - 2  E (x~r/y[aaek] + vYxrlv[aOak]) (2.5) 

k = l  

then implies that the functions ~ are of  the form ~ a ~x = ux~k (summed over 
£ = 1, 2, 3, 4) where ug = v~ (k = 1, 2), u~ = r c~ = x~ - x~, 

c~ x u v (2.6) u ~  w a := --e XpvVlv2r 

ands 

= rk~k, }~ = rkr[ 1 ~ (2.7) 

Here : =  and and are now given functions, depending 
only on the four parameters:~ 

do1 ' := ~l~xf~, ~& := ~/~4. 
$ We let always k ~e 1 = 1, 2 in the  following unless otherwise specified. Assume that  

v~ are future pointing timelike vectors are r a a  future pointing timelike or null vector. 
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X := -rl~;3vC~vg, Pk := -rGer%~l and r := ~ / ( - r~3r~r  ~) (2.8) 

that satisfy a system of  differential equations which determine the r-dependence 
if the ~'s are given as functions of) ,  and Pk on a surface r = const. The 
quantities ~ are completely arbitrary functions on E. 

While this space-time description is convenient for a discussion of  the group 
invariance properties of  the system and the study of  several other questions 
it is obviously not suitable for an explicit, numerical analysis o f  the possible 
motions. Instead we choose to describe the motions as integral curves of a 
vector field £r on a manifold of  initial data, or Cauchy surface, !;, The 
manifold E, which can also be considered as the state space o f  the system, 
can be chosen quite arbitrarily, but  it is convenient to take a specific sub- 
manifold o f  E such that the coordinates have some physical interpretation. 

As in II we choose for Z the surface I; = {z ° = 0 = r, r 1 = r2 = 1}, where 
z ~ = ½(x~ + xg), i.e. the initial data are the spacelike coordinates x~ and v~ 
of  the two particles such that the second particle is on a future pointing null 
ray issuing from the first at the time of  measurement and that the timetike 
component of  the 4-velocities are 

A B (2.9) v ° = x / ( 1  : =  

In II it was then shown how a vector field 5~ on Z that generates the 'time 
flow' can be obtained as the projection 5Y = - r r ,  ~-'o of  the generator J 0  of  
time translations on E, where rr: E-+ Z is defined such as to map the point 
p = (x~, v~) onto the unique point (xk, vk) on ~ that lies on every integral 
curve o f  the system (2.1) that passes through p. Explicitly the dynamical 
system on Z has the form (cf. II (2.34)) 

_ dxk _ 
X/c = d--~- f'~(Xk) = D - l ( 1  - Wk)@O)-lvk 

vk = d v k  _ S (vk)  = D - I ( 1  - -  Wk)(vO)-lgk 
dt 

where 

(2.10) 

wk:=(rv ° ) - l r . v t ,  r : = x / ( r . r ) ,  D : =  1 - ½ w l - ½ w  2 

and 

gk := ~J¢(vl - Xvk) + ~ ( r  - &vk) + ~x4w (2.11) 

Here the function ~x are the same as in (2.7) but can now be considered as 
depending only on X, p 1 and P2. 

Equations (2.10) are in principle enough to discuss the motions of  the 
relativistic two-particle system as soon as the functions ~ are given. But just 
as in non-relativistic mechanics it is more instructive to cast them into canonical 
form and then to exploit the first integrals obtained via Noether's theorem 
from the Poincard invariance of  the dynamical system on E. 
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Bringing the dynamical system (2;, • ) into canonical form means intro- 
ducing a symplectic form co on E such that 

(~s co = 0 (2.12) 

whence (locally) ~ _1 co = dH for some function H on 2;, that is called the 
Hamiltonian. Then in a canonical coordinate system (qk, Pk) for which 

6 
co= ~ @kA@k 

k = l  

(which exists locally according to Darboux's theorem) the system (2.10) 
becomes 

Ok= o_~ & _ _  o~ 
~Pk ' Oq k 

Since equation (2.12) clearly admits many solutions co for a given ~ additional 
criteria must be used to select the right canonical structure. Physically the 
most  important  is clearly that co should be invariant not  just under the time 
translation ~c but under the whole Poincar6 group. But also this condition 
is not  restrictive enough. 

In all of  non-relativistic mechanics one now assumes that co is such that 
the position coordinates x~ can be chosen as the first half  (the qe's) of a 
canonical coordinate system. In particular this implies that  the Poisson 
brackets (see footnote :]:, p. 396) between all position coordinates vanish. I t  
is the content of  the so-called no-interaction theorems that such a choice of  a 
Pioncar4 invariant co is only possible in the case of  the trivial interaction if 
the position coordinates are measured on a spacelike surface of initial data. 
In II it was shown, however, that  if the surface 2; is defined as we have done 
here then we can require that 

{x~, x f}  = 0 (k, l = 1, 2) (2.13) 

on all o f  ~ and still get reasonable non-trivial interactions. In fact, it can be 
conjectured that  for a given ~ there exists at most  a two-parameter family 
of  Poincar4 invariant symplectic forms satisfying this condition, whereby 
the two parameters can be interpreted as the rest masses of  the two particles. 

The accelerations ~ on the two particles obtained from the Li6nard- 
Wiechert fields in which the acceleration term is ignored have the following 
invariant components  on the surface 2; (cf. I, 6.75). 

mk~tX = (_l)tCgp,Z3pl ' mk~3 = _(_ l )kgXp~3,  ~4 = 0 (2.14) 

whereg  = e l e  2 is the coupling constant, ek being the charge and rnk the rest 
mass of  the k th  particle. Finding an co on E corresponding to these forces and 
satisfying (2.13) is not easy in general, but can be done readily to first order in 
g only. Accepting that  approximation as an exact model we slightly modify 
the force law (2.14), but get much simpler expressions for the integrals of  
motion. 
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Rather than stating the explicit  form of  co on E we give 7r'co in four- 
dimensionally covariant form. This 2-form can be obtained as the exterior 
derivative of  a 1-form 0 that  is itself Poincar~ invariant and is on E given by 
the simple expression'~ 

0 = ~ rla~p~ dx~ 
k 

where the Pk are explicit ly$ 

P~ -- Plcrc us ~ = mkv°~ _ gp[lv~ + ~gp-~2 p]2 (p~ _ pz + 2Xplpz)ra (2.15) 

Note that in the case of  no interaction (g = 0)p~ = mkv~ is just  the 4-momentum 
of  the k th  particle. One can continue thinking of  it  this way as long as it is kept  
in mind that  in general this term also contains part of  the 4-momentum of  the 
interaction. 

The symplectic form co on 2; itself then becomes 

co=-d,*O = , * ( ~ r ~ d x ~ / \ k  dp~) 

and the corresponding ' t ime flow' vector field oj. on E has the invariant 
components  

m k ~  = (_l)kgp.~3plA-t(1 +gm[lpkp[-2), ~4 = 0 g2m[clm[lP[2] t J 
mk~ 3 = -- (-- 1)kgp/~3 A -1 [X +gmtlpkpt3(Xpl -- Pk) -- 

(2.16) 

where A = 1 - -gm ~-1 m~lo ~1 p~l. They agree to first order in g with those in 
(2.14) and lead to the same 4-accelerations of  the two particles that  Bruhns 
(1973) derived from a simple Fokker  action. The expressions are relatively 
complicated but  fortunately will not  be needed for the integration of  the 
equations of  motion.  

3. Center o f  Mass Frame and Space of  Relative Motions 

Noether 's  theorem states that 

)~  : = A 3 0  (3.1) 

is an integral of  mot ion  for any solution of  equations (2.1) whenever the vector 
field A o n E  satisfies ~aA0 = 0, i.e.fA is in fact of  the forrn j ~  = 7r*f A for 

t Off E the coefficients of dv~ do not vanish, but since co = t*~r*w = -d(~*0), where 
¢: l~ ~ E is the imbedding map. 0 need only be known on Z. 

:]: Actually the term p2 3 - pl  3 remains completely arbitrary, but it does not enter 
either co nor the integrals of motion. 
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some functionfa : E -+ ~ which can be obtained simply by evaluating (3.1) 
on E. Moreover, for the Poisson brackets of these first integrals one has 

{ f A , f B }  =f[AB] . ( 3 . 2 )  

Substituting for A the generators of the Poincar6 group on E given in (2.4) 
and (2.5) yields the following first integrals (evaluated on E) 

P~ = ~'~ Y-~ A o = p~ + p~ 

= (m 1 - gP21)v~ + (m2 -- go ?l)v°~ + gXp ~1021re 

and 

(3 .3 )  

J ~  = rleU~Tt3vf2uv _A 0 = - 2 ~ x~ep{  1 

= - 2(m 1 --  gp21)z l%~ ] - 2(rn2 - gP 1-1)zl~vg] 

--2g~k/kllp21Z[~X? d3] -t" ( m  1 + gp21)F[c~U~l ] --  (/722 -t-gpll)r[~/)/32] 

(3.4) 

namely the total 4-momentum and the total 4-angular momentum tensor, 
respectively. According to (3.2), regarded as functions on E, they form the 
Lie algebra of the Poincar6 group with respect to the Poisson brackets: 

{pa, e ~ ) = o, (e e, j37} = 2rl~[~pTl (3.5) 

{j~,  jT~) = Z/c~[Tr2~ l~ _ 2jNT@I~ 

These quantities are well known for systems of non-interacting particles 
(or particles that only interact via collisions, see, e.g., Synge (1965)). We can 
treat them here in exactly the same way. Define the polarization vector, 

14~ := ½ec~XUP;flxu = - ( m l m  2 --  g2 p l l  p 2 1 ) W a  , (3.6) 

the total mass-energy M by 

M 2 = - P a P  a (3.7) 

and the magnitude L of the intrinsic angular momentum (spin) by 

M2L 2 = WC~Wc~ (3.8) 

For physical reason we will always assume thatM > 0 and L ~> 0 and more 
particularly that the total 4-momentum is a future pointing timelike vector. 
Let also 

L e = M -1  W ~ (3 .9 )  

be the spin-4-vector (a spacelike vector orthogonal to P~) and 

Le9 := _ M  -1 e~X~PxL~ (3.t0) 
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the 4-spin tensor, t Then jag  _ L ~  should be regarded as the orbital angular 
momentum tensor and it is easily seen that it can be written in the form 

jc~ _ L ~  = _ 2X[c~p¢t (3.11) 

Contracting (3.11) with P~ gives 

M 2 X  ~ + ( X ° P p ) e  ~ = J~PPp. (3.12) 

The 4-vector X a is thus defined up to an arbitrary term parallel to Pa. It can 
be considered as defining the wortdline of  the center of  mass o f  the system. 

It can be verified that the spacelike coordinates X A satisfy {X A, PB} = 8A, 
but {X A, X B} ~ 0 unless the spin vanishes. Thus the XA's are not  pure position 
coordinates, which is not surprising, since the center of mass of a relativistic 
system depends also on the velocities of  the particles. Stated in more mathe- 
matical terms this also means that there is no barycentric decomposition of  
the symplectic realization of  the Poincar~ group on the state space of  a 
multiparticle system (cf. Souriau, 1970). 

In spite of  this one can introduce a state space for the relative motions o f  
the system, namely a submanifold 2; r of  Z obtained by fixing the values of  P 
and X. In contradistinction to the non-relativistic situation the induced sym- 
plectic structure on this six.dimensional manifold 2; r depends then on the 
value of  P (but not  the value o f  X) though not in a very essential way. (Cf. 
II and, for a very general treatment of  such reductions, Marsden & Weinstein, 
1974.) 

It  does not seem unreasonable to discuss the motions with respect to a 
center of  mass frame, namely to consider the submanifold 

~ = { x  = 0 = P}  

of £ .  The condition that P = O, implies explicitly, in view of  (3.3) that on ~r 

(m 1 -- gp21)v1  + (m 2 -- g p T l ) v 2  +g?,pT~pglr = 0 (3 .13)  

Equation (3.12) together with (3.4) and X = 0 gives 

Mz = - - l (m  1 +go21)rvl  + ½(m 2 +gp l l ) rv2  

I o + ~(mlv 1 -- m z v  ° +gv°p'~ 1 -- gv°P11)r (3.14) 

As coordinates for 23r we now choose r and 

V := 2/g-1 (P2v2 -- p lY1)  (3.15) 

where N := v°p l  + v°p2, because then, according to (2.10) 

r =  f ( r )  = v (3.16) 

Contracting (3.13) with vk and r gives 

Mr = m l p  2 + m z P l  - 2g (3.17) 

t This definition is somewhat controversial. For a recent general discussion see 
Lorente & Roman (1974). 
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and 

My ° = m k + m 1)t - go[-1 (3.18) 

Now solving (3.13) and (3.15) for Vg and using (3.17) and (3.18) yields 

M r v  k = ½ ( -  l ) k N ( m l  -- g p / ~ l ) v  - -  g)~pk I r 

and substitution of  this into (3.14) then expresses z in terms of  r and v, 

2M2z 2 2 = [ m l - m 2 + g 2 ( p 1 2 - p 2 2 ) ] r + ( m l m 2 - g 2 p l l p 2 1 ) N v  (3.19) 

Since 

xk = z + ½(-1)kr (3.20) 

we see that once the time development of  r and v is known the trajectories of  
both particles in this center of  mass system can be easily obtained. Moreover, 
we see that Zr can be parametrized by all values of  r and v, i.e. that 
E r ~  N 3 x R 3. 

Instead of  the submanifold tr: Er --> E with its induced symplectic structure 
co r = t 'co the relative state space could have been obtained more abstractly 
by applying the reduction technique of  Marsden & Weinstein ( i974)  to (E, co), 
which admits the whole Poincar~ group as a symplectic symmetry group, and 
to 'divide out '  the space translation subgroup. It then follows that the time 
translations and the three-dimensional rotation group still act by symplecto- 
morphisms on (Er,  cot). This can also be seen directly by noting that the 
vector field £r on E is tangent to Er and thus induces a vector field Wr on 
Er by restriction, the 'time flow' generator on Zr. 

Incidently, although the mathematical construction of  Wr on Xr is rather 
straightforward and natural and there is no doubt  that the parameter t of  
these integral curves represents ' t ime',  the physical notions o f  the exact 
relationship between a description of  the motion as worldlines in space-time 
and as a flow on a state space seem much more vague. Nevertheless it seems 
reasonable to interpret the ' t ime'  defined by £r  r on Er as the proper t ime o f  
an observer stationed at the center  o f  mass. 

Similarly, the generators of  space rotations on ~, 

~ , ( a 4 B )  = - 2  2 (XIA ~B k] + k[A O/}k]) 
k 

are tangent to ~r. In fact, it is easy to see that the action of  SO(3) on E r is 
just the direct product of  the standard action on ~ 3 with itself. The integrals 
of  motion corresponding to these symmetries can again be obtained simply 
by restricting the previously calculated ones to Y> Thus we still have the mass- 
energy function M and the spin-3-vector L as integrals of  motion on 2;r. (Note 
that L a = (0, L) since PaL e = 0 and p a  = MS~.) Explicitly from (3.3) and (3.7), 

M 2 = m Z + m Z + 2 m t m 2 X - 2 g ( m l p ~ l + m e p ' ~ l ) - g 2 K p l 2 p 2 2  (3.21) 

where 
K : . . . .  p2 _ p~ + 2Xplp2 = w a w a  (3.22) 



404 H.P. KiJNZLE 

and from (3.4) and (3.9) with the help of (3.17) and (3.18) 

L = ½(Mr)-aN(m 1m2 - geP ~1 p~l)r  x v (3.23) 

In these equations the quantities Ok, X and v ° must, of course, be considered 
as functions of r and v as defined, rather implicitly, in (3.13) and (3.15). 

It would now be nice if one could proceed to classify globally the motions 
by looking at the submanifolds of Zr defined as inverse images of points in 
R 4 under the map (M, L): ZrO ~4 (cf. Smale, 1970). In practice, however, 
it is almost impossible to calculate explicitly something like the Jacobian of 
this map, due to the implicit definition of p~, v ° and X in terms of r and v. 
It may therefore be worthwhile to first study some properties of these motions 
in a more simple-minded approach, in order to establish whether they seem 
physical enough to warrant a further, possibly global study. 

4. First Integrals and Reduction to Quadratures 

As it is always done with the classical Kepler problem we will from now on 
assume (tentatively) that Nr = (N3 _ (0}) x R 3 only, thus eliminating the 
obvious singularity in the Coulomb force. But we may be restricting Zr 
further by requiring that the 4-vectors v~, r '~ and Pa are future pointing, v~ 
timetike and unit, P'~ timelike and r ~ null.t This implies in particular that 
(now always on Zr) 

M > 0 ,  pk>O,  N=V°Pl+V°P2>O 

v°~> 1, v~ = 1 i f f v  k = 0 

X~> 1, X = 1 i f f v  I =v 2 

K = wawa >~ O, K = 0 iffr  a, v~, v~ are coplanar. 

Assume from now on that the coupling constant g :~ O. It can then be used 
to replace all the quantities by dimensionless ones.~: Define 

= ( - t }  f O r l  ((attractiVe~repulsive I K := tgl - lg  an t  1 force (4.1) 

m := m 1 + m2 (total rest mass) (4.2) 

q:=m2m'~ 1, v : = m - l ( m 2 - - m l ) = ( q - 1 ) / ( q + l ) ,  # : = l - u  2 
(4.3) 

then mtc = ½m [1 + (-1)xv] and the Newtonian reduced mass becomes 
m l m z m  -1 = ¼pro. Now let 

0 := [g ] - tmr,  P ;= ( 0 " 0 )  1/2 (4.4) 

~ Actually it might  be  physically reasonable, though no t  compelling, to require that  
PR are future  pointing t imelike vectors. 

Note tha t  so far we used relativistic units  (speed of  light = 1 ). Thus all velocities 
are already dimensionless.  
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~:= [g I- lrnz,  Yk := [ g l - l m x k  (4.5) 

r :--[g I - l in t  (4.6) 

rr :=½1gl- lm(pl  +P2), o = ½ l g l - l m ( 0 1  - 0 2 )  (4.7) 

whence by (3.22) 

k := Ig I-Zm2K = 2(~ - 1  )Tr 2 - 2(h + 1)o 2 (t>0) (4.8) 

Note that rr > i o [ on all o f  Zr. For the integrals o f  mot ion mass-energy M 
and spin L we introduce 

E := e(M - m)  (4.9) 

where e = --1 and is interpreted the 

system, and let 

e :=Elm (>~0) (4.10) 

I f e  = - 1 ,  which will turn out  to be the case of  bounded motions for an 
attractive force, then 0 ~< e < 1.9 Define the dimensionless spin 3-vector by 

1 := I g l - l L  (4.11) 

and let l = (1.1) I/z be its magnitude. The following abbreviations will be 
convenient: 

c := 1 + ee (>0) ,  s := ~/[e(c  z - 1)] (~>0) (4.12) 

:= 2cQr u - o 2) ( > 0 )  (4.13) 

and 

13 :=/ao~ - 8c (4.14) 

Now (3.17) and (3.18) translate into 

7r = cp - vo + 2K (4.15) 

and 

v ° = ½c -1 [2~ + 1 -- (-1)kvQ~ - 1)1 (4.16) 

respectively. Solving (4.8) for 2~, and substitution into (4.16) gives 

v°= 2a- l  [~r2-Kcr +¼k + ( - 1 ) k ( K o - v o Z -  ¼vk)] (4.17) 

and 

N = 4 [g [m-I  or-1 • (4.t8) 

"~ A rough idea of the  magni tudes  involved may  be got  f rom these estimates.  If  two 
masses of  loag each circle around each other  at  l 0  b cm distance under  gravitational 
a t t ract ion t he n  e ~ 2 . 1 0  a - b - 2 9 .  For  the  ground level o f  the  H-atom or pos i t ronium 
e ~ 7 . 1 0  -6. 
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whe re 

6 :=Tra+vo3- -KOr2+o2)+¼k(zr+va)  ( ~ 0 )  (4.19) 

The 'energy integral' (3.21) now becomes 

2 e a [ a -  2 o ( r r -  vo)] = kfl (4.20) 

Conservation of the magnitude of the spin vector is expressed on the one 
hand by 

L 2 = LC~Lc~ = (m lm2 - g2p ~ l p ] l ) w a w ~  

or in dimensionless form by 

4cla = k l /z 1~1 (4.21) 
On the other hand, taking the square of  (3.23) and introducing the angle 3' 
between p and v, 

2ML = N, v l m  lm  2 - g2 p l l  p211 [ s i n  "y [ 

o r  

2cla 2 = ~61/3 sin 71 (4.22) 

We need two more equations to determine the relations between the different 
sets of  coordinates. Recalling (3.16) or 

O = v (4.23) 

where from now on" = d/dr we have 

= vcos  7 .  (4.24) 

Comparing this with 

dr/dt  = 2N - l  (v°pz  - v ° p l )  

which is obtained directly from (2.10) (or see II (2.41)) one deduces 

8v cos 7 + ½k(mr + a) + 2cpna = 0 (4.25) 

I t  will turn out that equations (4.20) to (4.25) suffice to determine the 
dependence on r of  0 and v. Once this is known, however, we can compute 

and Yk according to (3.14) and (3.20), which now become 

= - -  ½ C - 2 a  -2  [(16eZTra + v a 2 ) O -  fl 6v] (4.26) 

Yk = ~+ ½(-1)k0 (4.27) 

respectively. 

Zero Angular Momen tum 

I f  the angular momentum vanishes one should expect to get only straight 
line motions.  Unfortunately this does not yet  follow mathematically from 



A R E L A T I V I S T I C  A N A L O G U E  O F  T H E  K E P L E R  P R O B L E M  4 0 7  

equations (4.20) to (4.25). Rather it appears that a further restriction of  the 
manifold Fr is needed to get only the physically meaningful solutions. 

I f / =  0 equation (4.21) implies k = 0 and/or/3 = 0. 

Case A. Assume/3 4= 0, hence k = 0. Then (4.22) gives v sin 3' = 0. Thus 9 
and v are always parallel which corresponds to straight line motion (relatively, 
as well as for the two trajectories in the center of  mass system according to 
(4.26) and (4.27)). Then (4.20) and (4.25) become 

a = 200r - vo) (4.28) 

and 

fl = - 2cprro6 -1 (4.29) 

respectively. Equations (4.28), (4.13) and (4.15) yield 

4c + 2K(1 + 2esZ)p + es2ep 2 - 2eus2ocr 4 K u e e -  ]/CO "2 = 0 (4.30) 

Solving this equation for ~ as a function of  p and substituting into (4.29) then 
gives an equation of  the form dr  = f ( f i ) d o  which determines the time develop- 
ment of  the straight line motion completely. To find the range of  p in which 
the motion will take place one must satisfy the condition rr > ] o I. The 
turning points are obtained for o = 0 (according to (4.29)). For u = 0 (equal 
rest masses) this is easily done explicitly with the results: 

attractive force repulsive force 

M < m 0 < p <<- 2cs-2 no motion 
M = m 0 < fi no motion 
M > m 0 < p 2es-2 ~ p 

where the relative velocity vanishes precisely when p = 2cs-2. Thus this case 
corresponds qualitatively in every respect to the classical Kepler problem. 

Case B. If  we let instead/3 -=- 0 in (4.21), then k need not necessarily vanish. 
Again assuming v = 0 for simplicity one finds using equations (4.20) to (4.25) 
and checking the condition I~1 < ~, k > 0 that there is just one admissible 
case, namely for a repulsive force with e = 1 and e = X/(2) - 1. Then fi - 2V/2, 
a = 0 thus also t5 - 0, but k ('~ 0) is arbitrary. This case therefore represents a 
circular (relative) motion with vanishing angular momentum! We will see 
later in the case t 4= 0 that it may be necessary to limit the physical relative 
state space to a domain where/3 > 0. 

Non-zero Angular Momentum 

If  1 4= 0 choose an orthonormal basis such that i = le3. Then by (3.23) P 
and v lie both in the plane spanned by el and e2 and are not  parallel. The 
motion will therefore be confined to this plane. Let 

0 = p(cos q~, sin q~) 
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and 

v = v(cos ~ ,  sin ~ )  

where 3' = q~ - ~ 4: 0, 7r. 
We have again (4.24) and also 

= - v p  -1 sin 7 (4.31) 

For definiteness we can assume that sin 7 < 0 such that 4~ > 0. Now (4.21) 
implies/3 4 : 0  4= k and 

k = 16c212a/3 -2 

Equations (4.20), (4.22) and (4.25) then become 

qb :=/3[a - 2p0r - va)] - 8cl2a = 0 (4.32) 

0 = 2cla2p -1~-11/31-1 (4.33) 

and 

= - 2 c 6 - 1  [pTra + 4cl2o~2/3 -2 (pTr + q)] (4.34) 

respectively. These equations effectively reduce the problem to quadratures. 
In principle the motions are found as follows: 

Step 1. Solve ~ = 0 for a = ~(p;  e, X, u), whence ir = H(p; e, X, p). 
Step 2. For each solution E check that (i) E real, (ii) 7r > O, (iii) a > 0, 

(iv)/3 4: 0, (v) 6 > 0, if not discard this solution in the particular 
parameter range. 

Step 3. Substitute ~ into (4.33) and (4.34)and integrate over p. 

5. Numerical  Resul ts  f o r  Equal  R e s t  Masses 

We consider from now on only the case o f  an attractive force (K = 1) and 
bounded motion (e = - 1 ,  i.e. M < m) for non-zero angular momentum (l > 0). 
It turns out that the solution of  (4.32)for a in terms o f p  is possible in closed 
form only if u = 0, that is, for two particles with equal rest masses. The 
problem is reduced to two integrations which are relatively easy to carry out 
by computer, especially in the case of  bounded motion (i.e. 0 < p 1 ~< P ~< P2)- 

Equation (4.32) for u = 0 is equivalent to 

a 2 - 2a[p~r + 4c(1 + •2)] + 16epTr = 0 (5.1) 

where now 7r = cp + 2. Solving (5.1) for a gives 

a = 8c + K + e i A =/3 + 8c (5.2) 

where K := pTr + 4c(l 2 - 1) and A := ~/ (K  z + 64c212). Since A > [K [ it 
follows from (5.2) that e 1 = sgn (/3). Now (4.13) yields 

o = - e 2 ( 2 c ) - 1 / 2 I  1/2, I := 2c7r 2 - a 
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where e2 = +- 1. Since ~ must  be real the mot ion is confined to values of  p for 
which I >~ 0. In this range we then have 

dO/dp = e I e 2HI- 1/2 (5.3) 

and 

where 

and 

dr/dp = e2G1-1/2 

G := (2c) -3/2 [~2(~  + 2C2pTr2) + 8C3/2c~27r] (/32p~g + 47rZceZ)-I 

(5.4) 

with 

namely 

De = ½ S - 2 C - 1 (  I - 6S2 + Ul + US) 

l 2 = 2 + (1 --  3 S 2 ) c - l p  c -- ~S2Dc 

uk = [1 + 54S 4 + 6(--1)kS2(3 + 81S4)1/2] 1/3, k = 1, 2 

In the limit e --> 0 one finds 

1 1 
P c "  2e 12c 8e 

which are the Newtonian results for the classical Kepler motion.  This will be 
discussed in more detail in the next  section for arbitrary mass ratios. 

(5.7) 
(5.8) 

H := (2c)l/21& 2 I~1 p-1 (~2p~ + 4/2c&2)-1 

The sign e2 is chosen positive for outward and negative for inward motion,  
but el is a bit  harder to decide on. Since ~ 4 : 0  along every motion with 14= 0 
and since the physically most reasonable states turn out  to have ~3 > 0 we may 
consider this as a restriction of  the state manifold. Moreover, only if  this 
condition is adopted ~ and ~ will be continuously differentiable. We will 
henceforth assume it. Then 1/> 0 is equivalent to 

F ( p )  : =  s 2 c p  3 - -  2(1 - 3S2)p 2 + 4c(l 2 -- 2)p + 8l z ~< 0 (5.5) 

For any value of  e in (0, 1) it is easily seen that  F(p)  = 0 has either no 
positive roots, two coinciding ones or two distinct positive roots depending 
on the value of/ .  These cases correspond to no motion,  a stable circular 
mot ion  (p = const.) and a bounded mot ion  between a perihelion distance 
O 1 and an aphelion distance P2. 

Circular Motion 

For a given energy e a circular mot ion results if l = le, the maximum value 
for which F = 0 has a positive root.  Thus lc(e) and pc(e), the radius of  the 
circular motion,  are obtained as the solutions of  the system 

F(p,  I; e) = 0 and 0F/3p (p, l; e) = 0 (5.6) 
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N o n - c i r c u l a r  M o t i o n  

Now let 0 < l < l c, or, for fixed e, l := Xl c with 0 < X < 1 (then e := (1 - X2) v2 
is the eccentrici ty of  the resulting ellipse in the Newtonian limit). I t  is easy to 
establish rigorously what is expected on physical grounds, namely that  for 
decreasing X the smaller positive root  P 1 of  F = 0 decreases (down to zero for 
X -+ 0), while the greater positive root P2 increases. The mean radius a := 
1 0 g( 1 + P2), or the 'major  half  axis', that is independent of  X in the Newtonian 
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Figure 1 .-The mean radius a and the half period T (dashed line) as a function of the 
binding energy e. The lower curve for both a and T corresponds to k = 0.025, the upper 
one to X = 0.999999. The straight line portions for small energy represent Kepler's third 
law. 

case turns out to depend only slightly on X even for extreme relativistic 
situations, while its dependence on e, of  course, differs from the Newtonian 
one as e tends to 1. The mean radius a, as welt as the 'half  period '  

P2 

P l  

where obtained numerically and are plot ted in Fig. 1. 
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Figure 2 . -The  perihelion advance 2x~ as a function of the energy for different angular 
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0 0.02 

Figure 3.-Relative orbits for X = 0.3 and e = 0-001 (left) and e = 0-95. In the Newtonian 
limit X is the quotient (minor half axis)/(major halt" axis) of the elliptic orbit. The units 
are the dimensionless ones of 0. 
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The results so far indicate that the most interesting quant i ty  of  the 
relativistic relative orbits is the perihelion advance A~b = 2(~ 1 - ~r) where 

 l-f H  -/d0 
Pz 

The perihelion advance as obtained by numerical integration is plot ted as a 
function of  e and X in Fig. 2. For  small X the used integration procedure 
becomes more and more expensive for a given accuracy, but  the trend is 
obvious from Fig. 2: As e tends to zero for fixed X the perihelion advance 
also tends to zero, the Newtonian limit. If, however, X = 2lox/(2e ) as e -+ 0, 
then l ~ lo. This is not  the Newtonian limit, but  instead the relativistic analogue 
of the Newtonian parabolic mot ion (e = 0, l :~ 0) and so there is no reason why 
the perihelion advance should vanish. 

Orbits in the Center o f  Mass Frame 

For specific values of  e and X equations (5.3) and (5.4) were integrated to 
obtain the functions ~(p) and r(p)  and thus the orbits of  the relative motion.  
They look like rotating ellipses except for extremely relativistic binding 
energies when the orbits become more pear shaped (cf. Fig. 3). 

Combining the results for the relative mot ion with equations (4.26) and 
(4.27) gives the two particle trajectories in the center of  mass frame (Figs. 4 
to 6). In the limit e -~ 0 the corresponding Newtonian mot ion is again recovered. 
But for highly relativistic situations a certain asymmetry between the two 
trajectories shows up, which is due to our choice of  describing the particle 

300 

/ / / /  

-300 

Figure 4.-Particle trajectories in the center of mass frame for e = 0.001 and ~ = 0.3. The 
units are the dimensionless ones of Yl and Y2. Two full cycles (perihelion to perihelion) 
are plotted. All perihelion and aphelion positions of the particles are indicated. The dashed 
line is the trajectory of particle 2. 
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, / iT \ 

Figure 5.-Particle trajectories in the center of mass frame for e = 0-2 and k = 0.3. 

m o t i o n s  in a d v a n c e d - r e t a r d e d  form.  Note  t h a t  for  the  ul t ra  relat ivist ic case 
(e -~ 1) the  two par t ic les  move  j o i n t l y  a r o u n d  the  ' c en t e r '  o f  mass,  the i r  
relat ive d i s tance  be ing  a lways  m u c h  less t h a n  the  dis tance  f rom the  cen te r  o f  
m a s s .  

i e 

- - - -  / ,  I 

Figure 6.-Particle trajectories in the center of mass frame for e = 0-95 and X = 0-3. 
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6. Circular Motion for Arbitrary Mass Ratios 

The procedure indicated at the end of  Section 4 for the solution of  the 
equations of  motion becomes extremely cumbersome when v =/= 0, because 
then • is a fourth-order polynomial in a. We thus confine ourselves here to 
finding the conditions for circular motion in the case of  an attractive force, 
bounded motion (M < m) and non-zero angular momentum. Some aspects of  
the circular motions of  these systems have previously been studied by Bruhns 
(1973). 

Consider the function Cb(p, ~,/) (keeping v and e fixed all the time) as 
defining a family of  curves in the p - a  plane, parametrized by L Circular 
motion will result if such a curve is either parallel to the o-axis or consists of  
an isolated point only. The first possibility can be excluded by a closer 
inspection of  the function ~.  Since ~ is a polynomial in p, a and l if follows 
that an isolated point (Pc, ac) must be a relative extremum of  ~ ,  i.e. a solution 
of  the system 

~(p,  a , l )  = 0, 0p,~(p, ~, O = 0, ~ ( p ,  a, 0 = 0 (6.1) 

Thus triples (Pc, %,  Ic) that solve these three polynomial equations and are 
such that Pc > 0, t~cl < rrc = Cpc - v% + 2 and lc ~ > 0 then yield the possible 
circular motions of  the system. Note that then Pl and P2 are constant as well 
as the angular velocity 

°ac = ~(Pc) = 2clez2P -1/~-t ~ -1 Ipc, oc, ~c (6.2) 

tn practice the solutions of  (6.1) were found by Newton's method starting with 
v = 0, where according to the last section a c = 0, and then changing all variables 

l o g  ic 

3 

~'~F" q=0.1 

q=10 -~ 

-1 ~ i 1 t i i1 ]= 

-6  - 5  -4  -3  -2  -1 0 l o g  e 

Figure 7.--The (dimensionless) angular momentum l c for circular motion as a function of  
the energy. 
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Figure 8.-The radius Pc of the circular (relative) orbit as a function of the energy. 

gradually in order to reach only the physically significant solutions. In Figs. 7 
and 8 the values of  le and Pc are plot ted as functions of  the energy e for 
different values of  the rest mass ratio q = m2/rn 1. 

We indicate here how the asymptot ic  limits were obtained and show that 
Kepler 's  laws are indeed satisfied in the limit e -+ 0, except in the case of 
infinite mass ratios. For  fixed p let,  motivated by the case ~ = 0 (where 
o =  0), 

pc=a~_ le  -1 4 ~o + 0(e), O c = ~ o + O ( c )  

and 

12 = c - l e  + Co + O(e) 

Then equations (6.1) yield to the lowest order in e 

1 PC=~e [1 +0(e) ]  (6.3) 

a e = - (v / / l ) [1  + 0(e)] (6.4) 

lc = (y/8e)  v2 [1 + 0(e)] (6.5) 

If  the definitions (4.2) to (4.11) of  the dimensionless quantities are recalled 
it is easily verified that  the energy dependence of  the radius and the intrinsic 
angular momentum of  the circular orbit  for E ~ m 1 + m2 are exactly those 
of  the non-relativistic Coulomb field. Subst i tut ion of  (6.1) into (6,2) gives to 
lowest order in e 

co e = 4e (2e/~) 1/2 (6.6) 
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or 

2 4n2/w2 7r2//2/(Se 3) = 71"2//2/33 (6.7) T c := = 

which is precisely the form Kepler 's  third law takes in dimensionless units. 
We now consider the limit q = m2/m 1 --> 0 or v --> - 1. This limit should 

correspond to the situation that  is normally referred to as the relativistic or 
electromagnetic Kepler problem (cf., for example,  Synge (1965)). Unfortunately 
one cannot just put  v = - 1  in the basic equations of  Sections 3 and 4. But 
motivated by  the numerical solutions of  equations (6. I )  we expand for e 
fixed in powers o f / / =  1 - u 2, 

Pc = Po + P l / / +  0(//=) 

O c = 0 - 1 / / - 1  + 0 0 + 0(/2) 
2 _ 2 + 2  

l c -- t o  1 1 / / +  0( / /2 )  

(6.8) 

(6.9) 

(6.10) 

Then equations (6.1) can be solved consistently and we find to lowest order 
in / /  

Pc = (1 - s ) s - l c  -1 + 0 ~ )  (6.11) 

a c = 2//-1 + 0(1)  (6.12) 

l c = (1 - s)c -1 + 0(p)  (6.13) 

whence also 

~ c  =SC2( 1 -- S) -1 + 0(//)  

These equations were used to obtain the curves for q = 0 in Figs. 7 and 8. It is 
rather obvious from these figures that the limits e ~ 0 and q ~ 0 do not 
commute.  In particular, the Newtonian limit o f  the infinite mass ratio rela- 
tivistic Kepler problem cannot be taken byle t t ing  the binding energy go to zero. 

Finally we note that an ansatz like (6.8) to (6.10) can be substituted directly 
into equations (4.32) to (4.34). New quantities/5 = Po and 6 = a_ 1 can be 
introduced for the discussion of  the general non-circular motions in the 
infinite mass ratio limit. 
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